Efficiency of a Nebulizer Filter Kit to Prevent **Environmental Contamination During Nebulizer Therapy**

Background

- The SARS-CoV-2 (COVID-19) pandemic has highlighted the need to improve safety for frontline workers and avoid environmental contamination from aerosols.
- To aid in this, a breath actuated nebulizer is available with a filter set to capture any exhaled aerosol.

Objective

To determine the aerosol amounts emitted to the environment during nebulizer therapy with the **AEROECLIPSE* II BAN*** Nebulizer and to test the efficiency of the nebulizer filter system.

Methods

nebulizers with the filter kit were also times. Each device was evaluated with aerosol emitted through leakages or by HPLC-UV spectrophotometry.

AEROECLIPSE* II **BAN**^{*} Nebulizer alone

AEROECLIPSE* II **BAN*** Nebulizer with Filter Kit

European Respiratory Society Conference Sept 5 - 8, 2021

MD-122A-0821 * trade-marks and registered trade-marks of Trudell Medical International. Copyright © Trudell Medical International 2021

Nagel, M., Hoffman, N. & Suggett, J. Trudell Medical International, London, Canada

• The **BAN*** Nebulizer was operated at 50 psig initially without its optional filter kit (n = 5). Five repeatedly tested, 2 hours apart, up to five 2.5mg/3.0mL fill of salbutamol and connected to a simulator mimicking adult tidal breathing (R-13, Tv-500). In addition to inspiratory and expiratory filters, the nebulizer was placed under an extraction system to capture any exhalation. Salbutamol assay was undertaken

Results

- The mass of salbutamol captured from the extraction system with the **BAN*** Nebulizer alone was found to be $2.6 \pm 0.4\%$ of the initial dose as shown in Table 1.
- When the filter kit was added, zero fugitive emissions were recovered as shown in Table 1.
- Even after four subsequent treatments no salbutamol was recovered.

Table 1. AEROECLIPSE* II BAN* Nebulizer environmental loss testing as percent of the initial dose.

	BAN*	BAN* Nebulizer with Filter Kit					
	Nebulizer Alone	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Treatment 5	
Device 1	2.1 %	0 %	0 %	0 %	0 %	0 %	
Device 2	2.9 %	0 %	0 %	0 %	0 %	0 %	
Device 3	3.0 %	0 %	0 %	0 %	0 %	0 %	
Device 4	2.6 %	0 %	0 %	0 %	0 %	0 %	
Device 5	2.2 %	0 %	0 %	0 %	0 %	0 %	
Average	2.6 % ± 0.4 %	0 % ± 0 %	0 % ± 0 %	0 % ± 0 %	0 % ± 0 %	0 % ± 0 %	

Conclusion

- The BAN* Nebulizer alone had environmental losses of less than 3%, which is at least five times less than previously reported for continuous nebulizers and is consistent with previous data published for this device.¹
- The filter kit eliminated all losses, and even if the filter was not replaced after each treatment (label use), the efficiency appeared to be maintained for at least five uses.
- The data generated with this study only relates to the **BAN*** Nebulizer filter system. Different filter types may produce different outcomes and continuous nebulizers are likely to saturate the filter sooner.

1. Nagel M, et al. Respiratory Drug Delivery 2021. 2021:1;287-292.

TRUDELL MEDICAL INTERNATIONAL